Relational Mining for Compliance Risk

A Presentation for the Research Conference

Maury Harwood
Intelligent Business Solutions
NHQ Research
Maury.Harwood@irs.gov

David DeBarr MITRE debarr@mitre.org

Suite of Tools

The effort will build a collection of analytical tools specifically designed to help the IRS explore relationships between taxpayers. Currently, Link Analysis is focused on flow-through relationships created by Partnerships, Trusts and Subchapter-S Corporations.

Tool development is being overseen by NHQ Research's Intelligent Business Solutions Group in collaboration with:

- Operating Divisions Research Staff
- MITRE Corporation
- NHQ Research Tax Return Database Group providing Compliance Data Warehouse Staff and Resources

Objectives for Analysis of K-1 Tiered Transactions

- Create flexible, easy to use tools that do not require users to be experts in data mining or specialized analytical techniques
- Identify business rules that select high interest networks
- Use automated techniques to distill high interest networks of K-1s down to manageable sets for analysis
- Achieve goals of IRS strategic plan
- Define and understand motivation for complex financial entities
- Begin to understand resource allocation needs

Evolution of Effort

- IRS transcribes Schedule K-1 documents for the first time for tax year 2000
- Market review and technology assessment proposed using Link Analysis Technology (August 2002)
 - IRS Office of Research awarded a proof of concept contract to MITRE Corp, the IRS Federally Funded Research & Development Center
- Proof of concept for use of link analysis for flow-through entities demonstrated very quickly (May 2003)
- NHQ Research funds relational mining effort at MITRE through November 2004

Pattern Visualization and Investigation, yK1

Visualization Request for TIN:

Investment
Structure Pattern
of TIN and
Related Entities:

Graph Query Pattern Matching (GQ)

Status of Relational Mining

- Development of Specialized Data Structures and Algorithms
 - Requires iterative interviews with IRS Domain Experts
 - Customized model building and refinement
- Visualization tool (yK1) being actively tested by several users
- Graph Query Pattern Matching (GQ) Tool prototype is being evaluated
- Test cases delivered for classification/audit
- Several diverse domain areas and experts have been polled and recommendations for further development have been submitted by MITRE – Report to be completed
- Several research areas/algorithms to solve these problems are being actively pursued

Current Efforts

- Economic Entity
- Temporal Differences
- Substructure Discovery
- Conceptual Clustering
- Learning Active and SVM

All are being actively pursued

Detecting Abusive Transactions with Single-Class Support Vector Machines

- Only requires abusive transactions to learn to recognize other abusive transactions
 - Known tax shelter examples can be provided as input
 - Remainder of the data can be analyzed to find similar behavior
 - Future returns can be analyzed to find similar behavior
- Employs quadratic programming to identify support vectors (positive class examples that define the optimal decision boundary)

Parallel Coordinates Visualization of Data Describing 32 Abusive Transactions

Graph Illustrating a Support Vector (Support Vector = Prototypical Example)

Note: The black line is the result of omitting a minus sign during transcription. The black line was not characterized as part of the transaction.

Example of Abusive Transaction (found within same tax year)

Example of Abusive Transaction (found within next tax year)

Example of Different Type of Transaction (found within next tax year)

Note: The black line is <u>NOT</u> the result of omitting a minus sign during transcription. This transaction was identified because of its similarity to the training data.

Active Learning

- Inactive learning
 - User provides <u>large</u> number of positive (abusive) and negative (nonabusive) transactions
 - Regression (or some other learning algorithm) is used to learn to distinguish positive examples from negative examples
 - Computer does not ask user to label any new examples
- Active learning
 - User provides <u>small</u> number of positive and negative transactions
 - Regression (or some other learning algorithm) is used to learn to distinguish positive examples from negative examples
 - Computer asks user to label a small number of new examples based on uncertainty
 - This process allows the computer to more quickly develop a better decision boundary

Association Rules

• Schedule K-1 for Trusts, Partnerships, and S Corporations can be analyzed to identify unusual associations involving large dollar values

Example

IF Short Term Capital Gains = \$100,000 AND Payee Country is XX (Specific Country)

THEN NAICS Code is likely to be XXXXXXX (Specific NAICS)

- 24 K-1s indicated over \$560,000,000 was allocated to a particular off-shore entity (address) during tax year 2001
- No losses were allocated to the off-shore payees
- There were over 250,000 K-1s with an off-shore payee for tax year 2001, yet these 24 transactions represented over 2.7% of all gains allocated to an off-shore payee

Promoter Identified by Frequency Analysis (probability < 0.001 for shared values this frequent)

Frequent Substructure Discovery and Conceptual Clustering

These techniques can be used to summarize the data

